Transcriptional profiling of dysplastic lesions in K14-HPV16 transgenic mice using laser microdissection.

نویسندگان

  • Neerja Sethi
  • Joel Palefsky
چکیده

In the K14-HPV16 transgenic mouse model of human papillomavirus (HPV)-associated squamous cell cancers, HPV16 E6 and E7 oncogenes and E1 and E2 regulatory genes are driven by the K14 keratinocyte-specific promoter. HPV transcription varies within the different layers of the epithelium. The correlation between HPV transcription patterns and disease pathogenesis is not well understood. Understanding these patterns is critical to designing and testing new HPV-specific therapeutic strategies. We examined HPV gene expression in homogenous populations of cells microdissected from the stratum basale, stratum spinosum, and stratum corneum of lesions from the transgenic mice using PALM microlaser technology. RNA extracted from each cell layer was subjected to two-step gene-specific RT-PCR and real-time quantitative nested PCR. To ensure specific amplification of spliced transcripts, the primers used for real-time nested PCR spanned the splice sites. High levels of E2 were detected in the basal and supra-basal layers of hyperplastic and dysplastic lesions. E7 and E6* levels increased significantly over time in stratum basale and stratum spinosum. E6** was expressed at much lower levels. We showed that the transgenic mice express correctly spliced E2 transcripts and are suitable as a preclinical model to test a therapeutic strategy using transcriptional regulation by the E2 protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Difluoromethylornithine chemoprevention of epidermal carcinogenesis in K14-HPV16 transgenic mice.

To be informative for chemoprevention, animal models must both closely emulate human disease and possess surrogate endpoint biomarkers that facilitate rapid drug screening. This study elucidated site-specific histopathological and biochemical surrogate endpoint biomarkers of spontaneous epidermal carcinogenesis in K14-HPV16 transgenic mice and demonstrated that the incidence and severity of the...

متن کامل

Diindolylmethane inhibits cervical dysplasia, alters estrogen metabolism, and enhances immune response in the K14-HPV16 transgenic mouse model.

This study was designed to establish whether 3,3'-diindolylmethane (DIM) can inhibit cervical lesions, alter estrogen metabolism in favor of C-2 hydroxylation, and enhance immune function in the K14-HPV16 transgenic mouse model. Mice were bred, genotyped, implanted with E(2) pellets (0.25 mg/90-day release) under anesthesia, and divided into groups. Wild-type and transgenic mice were given eith...

متن کامل

Magnetic resonance imaging defines cervicovaginal anatomy, cancer, and VEGF trap antiangiogenic efficacy in estrogen-treated K14-HPV16 transgenic mice.

Noninvasive detection of dysplasia provides a potential platform for monitoring the efficacy of chemopreventive therapy of premalignancy, imaging the tissue compartments comprising dysplasia: epithelium, microvasculature, and stromal inflammatory cells. Here, using respiratory-gated magnetic resonance imaging (MRI), the anatomy of premalignant and malignant stages of cervical carcinogenesis in ...

متن کامل

Beta-Catenin Accelerates Human Papilloma Virus Type-16 Mediated Cervical Carcinogenesis in Transgenic Mice

Human papilloma virus (HPV) is the principal etiological agent of cervical cancer in women, and its DNA is present in virtually all of these tumors. However, exposure to the high-risk HPV types alone is insufficient for tumor development. Identifying specific collaborating factors that will lead to cervical cancer remains an unanswered question, especially because millions of women are exposed ...

متن کامل

Chronic estrogen-induced cervical and vaginal squamous carcinogenesis in human papillomavirus type 16 transgenic mice.

High-risk human papillomaviruses (HPVs), including type 16, have been identified as factors in cervical carcinogenesis. However, the presence and expression of the virus per se appear to be insufficient for carcinogenesis. Rather, cofactors most likely are necessary in addition to viral gene expression to initiate neoplasia. One candidate cofactor is prolonged exposure to sex hormones. To exami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 18 11  شماره 

صفحات  -

تاریخ انتشار 2004